Fast dynamics of domain-general vs. specific neural mechanisms of task switching:
Interactions between the frontoparietal and spatial orienting networks
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An important question in cognitive neuroscience is how the human brain self-organizes to perform tasks. Task switching
involves the selection, inhibition and updating of hierarchically ordered task-set (sensory, sensorimotor, contextual, episodic)
representations in our brains. A frontoparietal executive network is recruited during both proactive and reactive control of SWITCH GO/NOGO
task-switching, although its interactions with an independent spatial orienting network have not been addressed yet. +
Frontoparietal activity is strongly associated with shifts of attention between locations (Corbetta et al., 2000). Likewise, x x
frontoparietal activity is also observed in many different kinds of tasks (Peterse & Posner, 2012; Duncan, 2013), suggesting Central Peripheral Central Peripheral Central Peripheral
related mechanisms. The relative contributions from task-switch specific and domain-general mechanisms to the temporal
dynamics of this frontoparietal network are still ill-defined. This study addressed these questions by measuring event-related Early P2
potentials (ERPs) in three tasks with different cognitive demands, while manipulating involuntary spatial orienting. 190 ms
Nineteen young participants (four male, mean age 22,78; SD=1.6) were intermittently cued to switch or repeat their Late P2
perceptual categorization of geometrical shapes varying in colour and form - Switch task, or else they performed two visually 225 ms
identical control tasks with lesser cognitive demands and distinct S-R mappings - Go/NoGo and Oddball task (Fig. 1).
Spatial orienting was manipulated as a task-irrelevant factor, with visual stimuli presented either centrally or peripherally in
two separate trial blocks, each with identical visual stimulation consisting of frequent coloured shapes (p=0.9) and randomly
interspersed black shapes (p=0.1). N2
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{ . } Figure 4. Topographical maps for the cue-locked P2, N2, P3 and P6 components in the Switch and Go/NoGo tasks.

The latency and scalp distribution of P2 was modulated by Spatial location in both tasks: While for central displays cue
P2 peaked at 190 ms frontally and at 225 ms parieto-occipitally, it showed a unique fronto-central 225 ms peak for
peripheral stimuli. With regards to N2, central displays elicited a more frontal distribution than peripheral displays. In the
Switch task, switch cues evoked larger P3 (p’s<0.025) and P6 (p’s<0.001) amplitudes than repeat cues, although the
\scalp distributions of these two components were not influenced by the Spatial location of stimuli. /
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Figure 1. Novel bi-field visuomotor task. Switch task: participants are instructed to sort the same stimuli than in the
control tasks according to two classification rules that alternate following the cues. Go/NoGo task: similar perceptual
load but higher sensorimotor demands while responding to two stimuli and withholding responses to NoGo distractors.
Oddball task: participants pressed one button to designated stimuli while ignoring all other stimuli (Barcelo et al 2008).
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COSTS Figure 2. Mean reaction times (RTs) yielded main effects for Task
20 - (p<0.0001), Spatial location (p<0.001), and Trial (p<0.0001), with the Fz
70 - longest RTs for the Switch task, peripheral locations and 1st target trials. A
* 60 - Task x ‘Spatial location’ interaction (p<0.05) revealed longer RTs for
g 50 - peripheral locations in the Switch and Go/NoGo tasks, but not the Oddball
3 ‘3‘3 : task. A Task x Trial interaction (p<0.001), revealed the presence of restart
= 20 - costs in Switch and Go/NoGo tasks, but not in the Oddball task. No other
= 10 - I-E_' effects or interactions reached significance for mean RTs The analysis of
0 +=— ' ' behavioral costs revealed: (1) local switch costs did not differ significantly Pz
Oddball * Ga/NoGo  Swich - Mbdog from zero in the Switch task; (2) restart costs differed significantly across
Restart tasks (p<0.0001), but none of these were modulated by Spatial location
Ocentral @ Peripheral (F’s<1); (3) mixing costs were present in the Switch task (p<0.0001), but Central  Peripheral 50 400 300 1200
\ were not influenced by the hemifield of Spatial location (F<1). J o
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ELECTROPHYS I OLOGY Figure 5. ERP waveforms and topographic maps in the Switch task. Main effects of ‘Spatial location’ were present
for cue-locked P2, N2 and P3 amplitudes (p’s<0.026), but not for cue-locked P6 and CNV components. The 3-way
/ CUE TARGET 1 TARGET 3 \ interaction between ‘Component’, ‘Spatial location’ and ‘Cue type’ revealed that cue-locked P2 was enhanced in
Central response to switch as compared to repeat cues, but only for peripheral cues (p<0.001), whereas cue-locked P3 and P6
P2 P3 P6 P2 P3 : . ‘ . SN
N / Sustained were larger in response to switch than repeat cues regardless of ‘Spatial location’ (p’s<0.025). The CNV was not
itivi modulated by ‘Cue type’ nor ‘Spatial location’. Target-locked P2 amplitudes in response to the 1st target were larger for
positivity
peripheral stimuli (p<0.001), while N2 amplitudes were more pronounced for central displays (p<0.013). First target N2
was more pronounced for switch compared to repeat trials but only for central display (p<0.05). Neither 1st target P3 nor
Fz : L . ‘ . . : :
the sustained positivity were influenced by ‘Spatial location’, although both components were larger following a switch
B than a repeat cue (p’s<0.0001), mostly over frontopolar and frontal scalp regions. As for 3™ targets no significant main
Q‘fects nor interactions were observed for late ERP waveforms. /
. CONCLUSIONS
| | « Both switch-specific (indexed by cue-locked P6 and a sustained target-locked positivity following task
Peripheral P2 P3 P6 P2 P3 P2  P3 transitions) and domain-general mechanisms (indexed by cue- and target-locked P2 and P3
7 \ / Sustained - / components) suggest fast recurrent neural activations within a common frontoparietal network.
positivity « The modulations in cue-locked P2, N2 and P3 reflect the interaction between spatial orienting and
£ cognitive control. Specifically, enhanced switch cue-locked P2 seem to reflect early executive control of
1N task switching in the face of higher spatial uncertainty.
« Spatial orienting to the first target influenced early indexes of attentional control, as shown by the
modulations observed in P2 and N2 amplitudes.
« The distinct influence of spatial orienting upon cue-locked P3 and target P3 add to the discussion of the
P300 family and their functional role in the proactive and reactive control of task switching.
Pz « All in all, these results reveal distinct spatiotemporal interactions between the frontoparietal and spatial
-50 400 800 1200 orienting networks, and shed new light on the functional role of a frontoparietal “multiple demand”
milliseconds system (Duncan, 2013) during the preparation and implementation stages of task switching.
peripheral display. Cue-locked P3 amplitudes were larger for central presentation (p<0.026), and also larger for the Go/ REFERENCES
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tasks as compared to Oddball (p’s<0.048). Finally, in the Switch task a sustained positivity was locked to 15t targets
was absent in 39target trials. This target-locked positivity was not affected by Spatial location of the stimuli. /
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